

Wednesday 16 May 2012 - Morning

AS GCE MATHEMATICS

4721 Core Mathematics 1

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer book 4721
- List of Formulae (MF1)

Other materials required: None Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found in the centre of the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are **not** permitted to use a calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

- This information is the same on the Printed Answer Book and the Question Paper.
- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- The Printed Answer Book consists of **12** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

- 1 Simplify $(x-5)(x^2+3) (x+4)(x-1)$.
- 2 Express each of the following in the form 7^k :
 - (i) $\sqrt[4]{7}$,

[3]

[1]

(ii)
$$\frac{1}{7\sqrt{7}}$$
, [2]

(iii)
$$7^4 \times 49^{10}$$
. [2]

- 3 (i) Find the gradient of the line *l* which has equation 3x 5y 20 = 0. [1]
 - (ii) The line *l* crosses the *x*-axis at *P* and the *y*-axis at *Q*. Find the coordinates of the mid-point of *PQ*. [4]
- 4 (i) Express $2x^2 20x + 49$ in the form $p(x-q)^2 + r$. [4]
 - (ii) State the coordinates of the vertex of the curve $y = 2x^2 20x + 49$. [2]
- 5 (i) Sketch the curve $y = \sqrt{x}$. [2]
 - (ii) Describe the transformation that transforms the curve $y = \sqrt{x}$ to the curve $y = \sqrt{x-4}$. [2]
 - (iii) The curve $y = \sqrt{x}$ is stretched by a scale factor of 5 parallel to the x-axis. State the equation of the transformed curve. [2]
- 6 Find the equation of the normal to the curve $y = \frac{6}{x^2} 5$ at the point on the curve where x = 2. Give your answer in the form ax + by + c = 0, where a, b and c are integers. [7]

7 Solve the equation $x - 6x^{\frac{1}{2}} + 2 = 0$, giving your answers in the form $p \pm q\sqrt{r}$, where p, q and r are integers. [6]

- 8 (i) Find the coordinates of the stationary point on the curve $y = x^4 + 32x$. [5]
 - (ii) Determine whether this stationary point is a maximum or a minimum. [2]
 - (iii) For what values of x does $x^4 + 32x$ increase as x increases?

- (i) A rectangular tile has length 4x cm and width (x + 3) cm. The area of the rectangle is less than 112 cm². 9 By writing down and solving an inequality, determine the set of possible values of x. [6]
 - (ii) A second rectangular tile of length 4y cm and width (y + 3) cm has a rectangle of length 2y cm and width y cm removed from one corner as shown in the diagram.

Given that the perimeter of this tile is between 20 cm and 54 cm, determine the set of possible values of *y*. [5]

A circle has equation $(x-5)^2 + (y+2)^2 = 25$. 10

(i)	Find the coordinates of the centre C and the length of the diameter.	[3]
(ii)	Find the equation of the line which passes through C and the point $P(7, 2)$.	[4]

- (iii) Calculate the length of CP and hence determine whether P lies inside or outside the circle. [3]
- (iv) Determine algebraically whether the line with equation y = 2x meets the circle. [5]

Question		n	Answer	Marks	Guidance	
1			$x^{3}-5x^{2}+3x-15-(x^{2}+4x-x-4)$	M1	Attempt to expand both pairs of brackets	No more than one "missing term"
				A1	Expansion with at most one incorrect term (no missing terms)	Do not allow "invisible brackets" unless final answer correct Allow one simplified incorrect term e.g. $(x^2 + 5x - 4)$
			$=x^{3}-6x^{2}-11$	A1	cao	
2	(i)		$\sqrt[4]{7} = 7^{\frac{1}{4}}$	B1	Allow $7^{0.25}$, $k = 0.25$ etc.	
2	(ii)		$\frac{1}{7\sqrt{7}} = 7^{-\frac{3}{2}}$	M1	Clear evidence of correct use of $7^{a} \times 7^{b} = 7^{a+b}$ or a single term $\frac{1}{7^{d}} = 7^{-d}$	Allow $\frac{1}{7^d 7^e} = (7^d 7^e)^{-1} [\text{not} = 7^d 7^{-e}]$
				A1 [2]	Allow -1.5, $k = -1.5$ etc.	
2	(iii)		$7^4 \times 7^{20}$	M1	7^{20} or 49^2 seen (or 49^{12})	$(7^2)^{10}$ is not good enough for M1
			$=7^{24}$	A1	Allow $k = 24$	
				[2]		
3	(i)		$\left \frac{3}{5}\right $	B1	Allow 0.6 or any equivalent fraction	Do not allow $\frac{3}{5}x$ as final answer
				[1]		
3	(ii)		$P\left(\frac{20}{3},0\right)$	B1	May be implied by subsequent working	Allow $x = \frac{20}{3}$ for P
			Q(0, -4)	B1	May be implied	Allow $y = -4$ for Q
			$\left(\frac{\frac{20}{3}+0}{2},\frac{0+^{-}4}{2}\right)$	M1	Correct method to find midpoint of line	the use of formula is correct (including correct signs) for both x and y, Can be implied by correct final answers
			$\left(\frac{10}{3},-2\right)$	A1 [4]	Allow exact equivalent forms, decimals must be correct to at least 2dp	SC If P and Q given the wrong way round but then used correctly to obtain correct final answer B2

Question		Answer	Marks	Guidance	
4	(i)	$2(x^2-10x)+49$	B1	<i>p</i> = 2	If p , q , r found correctly, then ISW slips in format.
		$=2(x-5)^2-50+49$	B1	$(x-5)^2$	$2(x - 5)^2 + 1$ B1 B1 M0 A0
					2(x - 5) - 1 B1 B1 M1 A1 (BOD) $2(x - 5x)^2 - 1$ B1 B0 M1 A0
					$2(x^2 - 5)^2 - 1$ B1 B0 M1 A0
		$=2(x-5)^2-1$	M1	$49 - 2q^2$ or $\frac{49}{2} - q^2$	$2(x + 5)^2 - 1$ B1 B0 M1 A1 (BOD) 2 $x(x - 5)^2$ 1 B0 P1M1A1
			A 1	2	2x(x-3) = 1 by binning
			[4]		
4	(ii)	(5, -1)	B1 FT	ft their q (Do not allow "5 x ")	If restarted then B1 B1 for each
			B1 FT	ft their r (Do not allow "-1 y ")	B0 if more than one answer given
5	(i)				Ignore "feathering"
		↑			
			M1	Correct shape of graph in Q1	Finite "plot" scores M0
				Ignore reflection in the x axis	Allow slight curve downwards for M
					mark but not for A
			A1	Correct graph in O1 only	Allow tending to horizontal
			[2]		
5	(ii)	Translate(d) or Translation	B1	Do not accept "shift", "move" etc. without	
		Parallel to r -axis $(+)4$ units	B1	For "parallel to the r axis" allow	Allow $e \sigma$ "4 units across in the
			DI	"horizontally", "across", "to the right", "in	positive x direction parallel to the x
				the (positive) x direction". Do not accept	axis" but do not award second B1 if
			[2]	"in/on/across/up/along/to/towards the x	statements are contradictory.
5	(iii)				SC If doubt over whether use of square
_		$y = \sqrt{\left(\frac{x}{5}\right)}$	MI	$\sqrt{5x}$ or $\sqrt{\frac{x}{5}}$ seen	root/solidus is totally correct B1 (Must
		V(3)	A1	Must have " $y =$ " to earn A mark (do not	still have " $y =$ ")
			[2]	allow " $f(x) =$ ")	Allow $\sqrt{5}y = \sqrt{x}$ or equivalent

4721

Question	Answer	Marks	Guidan	ce
6	$\frac{\mathrm{d}y}{\mathrm{d}x} = -12x^{-3}$	M1 A1	Attempt to differentiate (i.e. kx^{-3} seen) Correct derivative	"+ C" is A0
	When $x = 2$, $\frac{dy}{dx} = -\frac{3}{2}$	A1	Correct value of $\frac{dy}{dx}$. Allow equivalent	
			fractions.	
	Gradient of normal = $\frac{2}{3}$	B1 FT	Follow through their evaluated $\frac{dy}{dx}$	Must be processed correctly
	When $x = 2, y = -\frac{7}{2}$	B1	Correct <i>y</i> coordinate, accept equivalent forms	
	$y + \frac{7}{2} = \frac{2}{3}(x-2)$	M1	Correct equation of straight line through (2, their evaluated <i>y</i>), any non-zero gradient	
	4x - 6y - 29 = 0	A1 [7]	Correct equation in required form i.e. $k(4x - 6y - 29) = 0$ for integer k. Must have "=0".	
7	$k = x^{\frac{1}{2}}$	M1*	Use a substitution to obtain a quadratic with k^2 , $6k$ and $2(may be implied by squaring or mating later)$	Any sight of 4 or 36x from "squaring" original equation scores
	$k^2 - 6k + 2 = 0$		rooting later)	U/0. Alternative solution:
	$(k-3)^2 - 7 = 0$	M1 dep	Correct method to solve resulting quadratic	$\frac{Atternative solution}{6\sqrt{x} = x + 2}$ $36x = x^2 + 4x + 4$
	$k = 3 \pm \sqrt{7}$	A1	$k = 3 \pm \sqrt{7}$ or $k = \frac{6 \pm \sqrt{28}}{2}$ or $k = 3 \pm \frac{\sqrt{28}}{2}$	Rearrange and square both sides M1* Correct simplified quadratic $x^2 - 32x + 4 = 0$ A1
	$x = \left(3 \pm \sqrt{7}\right)^2$	M1 M1	Recognise the need to square to obtain x Correct method for squaring $a + \sqrt{b}$ (3 or 4	Method to solve quadratic M1dep Correct unsimplified expression A1
			term expansion)	Correct discriminant A1 $16 \pm 6\sqrt{7}$ o.e. A1
	$x = 16 + 6\sqrt{7}$ or $x = 16 - 6\sqrt{7}$	A1	Allow $16 \pm 3\sqrt{28}$ or $16 \pm 2\sqrt{63}$	SC
				If no evidence of substitution at start
				and no squaring/rooting at end:
				with $a = 1$ $b = -6$ $c = 2$ and
		[6]		solution simplified to $3 \pm \sqrt{7}$ B1

Question		on	Answer	Marks	Guidance	
8	(i)		$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^3 + 32$	M1 A1	Attempt to differentiate (one term correct) Completely correct	"+ C" is A0
			$4x^3 + 32 = 0$	M1	Sets their $\frac{dy}{dx} = 0$ (can be implied)	
			x = -2	A1	Correct value for x (not ± 2) www	
			y = -48	A1 FT	Correct value of y for <i>their</i> single non-zero	e.g. (2, 80), (4, 384), (-4, 128),
				[5]	value of x	(8, 4352), (- 8, 3840)
8	(ii)		$d^2 V$ 12 2	M1	Correct method for determining nature of a	e.g. evaluating second derivate at
			$\frac{dx^2}{dx^2} = 12x^2$		stationary point – see right hand column	$x = -2^{\circ}$ and stating a conclusion
			When $x = -2$, $\frac{d^2 y}{dx^2} > 0$ so minimum pt	A1	Fully correct for $x = -2$ only	Evaluating $\frac{dy}{dx}$ either side of $x = -2$ "
			dix	[2]		Evaluating v either side of $x = -2$
8	(iii)		x > -2	B1 FT	ft from single x value in (i) consistent with (ii)	Do not accept $x \ge -2$
	, í			[1]		-
9	(i)		Area of tile = $4x(x+3)$	B1	Correct expression for area of rectangle (may be unsimplified)	
			4x(x+3) < 112	B1 √	Correct inequality for their expression	
			$4x^2 + 12x - 112 < 0$			Correct alternative forms for
			4(x + 7)(x - 4) < 0	M1	Correct method to galve a three term quadratic	factorised inequality include: (u + 7)(4u - 16) < 0
			4(x + 7)(x - 4) < 0	M1	Confect method to solve a three term quadratic	(x + 7)(4x - 10) < 0 (4x + 28)(x - 4) < 0
				1111	inequality i.e. lower root $< x <$ higher root	(4x + 26)(x - 4) < 0 (2x + 14)(2x - 8) < 0 etc
			-7 < x < 4	A1	(May be implied by correct final answer)	
			$\therefore 0 < x < 4$	A1	Restricts range to positive values of x CWO	Do not allow \leq for final A mark
				[6]		
9	(ii)		Perimeter = $4y + (y + 3) + 2y + y + 2y + 3$	M1	Clear attempt to add lengths of all 6 edges	Allow < or ≤ throughout part (ii)
			20 < 10 + 6 < 54	Al D1 ET	Correct perimeter simplified to $10y + 6$ seen	Con still be unsime life at here
			20 < 10y + 6 < 54	BIFI M1	Correct inequalities for their expression	Can still be unsimplified here
				111	dealing with all 3 terms	
			1.4 < v < 4.8	A1	Accept " $1.4 < v, v < 4.8$ ", " $1.4 < v$ and $v <$	Do not ISW if contradictory incorrect
				[5]	4.8" but NOT " $1.4 < y$ or $y < 4.8$ ".	form follows correct answer

Mark Scheme

Question		n Answer	Marks	Guidance		
10	(i)	Centre $(5, -2)$	B1			
		Radius = 5	MI	5 or $\sqrt{25}$ soi		
		Diameter = 10	A1			
			[3]			
10	(ii)	$2^{-2}(2)$	M1	uses $\frac{y_2 - y_1}{y_1}$ with their centre	3/4 substitutions correct	
		Gradient of line = $\frac{7-5}{7-5}$ (= 2)	A1	$x_2 - x_1$		
		v - 2 = 2(x - 7) or $v - 2 = 2(x - 5)$	M1	correct equation of straight line through $(7, 2)$	Allow other points on the line e.g.	
		y = =(w /) (i y = = (w v)		or their centre, any non-zero gradient	mid-point is (6,0)	
		y = 2x - 12	A1	o.e. 3 term equation		
			[4]			
10	(iii)	$\sqrt{(7-5)^2+(2-2)^2}$	M1	Use of $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ with their	3/4 substitutions correct. Must have	
		$\gamma(7,5)+(2,2)$		centre	square root as length specifically	
				contro	asked for.	
		$=\sqrt{20}$	A1			
		$\sqrt{20}$ < 5 so P lies inside the circle	B1 FT	Compares their length <i>CP</i> with their radius	SC If M0 , award for B1 for finding	
				and states consistent conclusion.	$CP^2 = 20$ and stating $20 < 25$ and	
			[3]	Both lengths must be mentioned.	concluding inside www	
10	(iv)	$(x-5)^2 + (2x+2)^2 (= 25)$	M1*	Substitute for x/y or attempt to eliminate one		
				of the variables		
		$(x-5)^2 + (2x+2)^2 = 25$	Al	Correct unsimplified equation (= 0 can be $\frac{1}{1}$		
		$x^2 - 10x + 25 + 4x^2 + 8x + 4 = 25$		implied)		
		$5x^2 - 2x + 4 = 0$	A1	Obtain correct 3 term quadratic	If x eliminated, $5y^2 - 4y + 16 = 0$	
		$b^2 - 4ac = 4 - (4 \times 5 \times 4)$	M1dep	Attempt to determine whether equation has		
				real roots with consistent conclusion regarding		
				roots/intersection		
		$b^2 - 4ac < 0$ so no real roots	A1	Fully justified statement that line and circle do	If the discriminant is evaluated, this	
				not meet www	must be -76 (from the quadratic in <i>x</i>)	
					or -304 (from the quadratic in <i>y</i>) for	
					full marks.	
			[5]			